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Capacity of the HTM Sensorimotor Network 

1 Overview 

This technical note describes capacity analysis of the sensorimotor network. We focus on the 
following questions. 

• How many distinct features and locations can the input layer represent? 
• How many (feature, location) pairs can an object contain? 
• How many objects can the sensorimotor network store? 
• How much should an output cell sample from the input cells? 

The first question is related to how diverse the set of sensory features or object locations can be. The 
second question is related to how complex can individual objects can be. The analysis suggests (1) 
there is large encoding power in the input layer to represent a diverse set of features and locations; 
(2) the sensorimotor network allows each object to contain hundreds of distinct (feature, location) 
pairs; (3) the sensorimotor network can store hundreds of simple objects, where each object contains 
10 distinct (feature, location) pairs and (4) output cells can connect to a small fraction of the active 
input cells with reasonable error rate. 

2 Capacity of the input layer 

In this section we analyze how many sensory features and object locations can be stored in the input 
layer. In the following analysis, we assume the input layer contains N minicolumns and M cells per 
minicolumn. At any time, w minicolumns contain active cells, and only one cell becomes active in 
these w minicolumns. As discussed in the main text, we typically have N=150, M=16 and w=10.  

2.1 Capacity for sensory features 

We assume each sensory feature corresponds to a distinct sparse distributed representation (SDR). 
The number of unique features that can be represented is  

𝑁
𝑤  
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In practice, we also want to make sure that distinct sensory features are encoded as SDRs with 
sufficient differences. This will both ensure a certain amount of noise robustness and reduce the 
chance of false positive errors in object recognition (see below). Specifically, for each sensory 
feature, we assume any SDR with more than θ bits overlap with the template SDR x is considered as 
the same sensory feature. Using the concept of SDR overlap set (Ahmad & Hawkins 2016), the 
number of such SDRs is 
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The capacity for sensory features will reduce in proportion to the size of SDR overlap set. The 
resulting sensory feature capacity is 
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Despite this reduction due to inexact matches, the feature capacity is still a astronomically large 
number. For θ =7, the number of unique sensory features is greater than 10A. This is much smaller 
than =

*  (> 10CD) but is more than enough for any practical application. 

2.2 Capacity for object locations 

The same sensory feature can be sensed at different locations. The location information for a given 
sensory feature is represented by depolarization of individual cells within the minicolumns. Since 
there are 𝑀 cells per minicolumn, we can represent each sensory feature at 𝑀*  or 16CG  different 
locations with typical parameters. Again, we might want to consider inexact matches. That is, given 
the same sensory feature at a learned location and at a random location, if the SDR for the random 
location shares more than θ bits with the SDR for the learned location, it will be considered as the 
same location. The number of SDRs that has inexact (>θ bits) match with a given SDR is  
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After considering inexact matches, the capacity for locations is  
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This number is also very large for typical parameters. For θ =7, w=10, M=16, the location capacity is 
more than 10K. 

These results suggest a very large number of distinct sensory features and locations can be 
represented in the input layer, such that two different feature/location SDRs have less than θ bits 
overlap. Because of this large capacity, we could use a simple random algorithm to assign random 
SDRs for a set of features or locations. The chance of a "bad" assignment is simply the inverse of the 
capacity.  

We have verified this result by generating 10,000 pairs of random input SDRs. The maximum 
overlap we observed during simulation is only 3 bits (out of 10 active bits), and the mean overlap 
across two random input SDRs is only 0.043. It is extremely unlikely for two random SDRs in the 
input layer to have significant overlap.  

 

3 Capacity of the output layer 

In the sensorimotor network, each object is represented as a collection of (sensory feature, location) 
pairs it the input layer, and a stable SDR in the output layer. This requires output cells to form 
connections to multiple input cells that represent the corresponding sensory features and locations. 
Therefore, the large number of converging connections from the input layer to the output layer could 
cause false match errors. That is, an object SDR could be activated by an input SDR that does not 
correspond to any of the (feature, location) pair of the learned object, but rather because that input 
SDR also happens to match enough of the connections. Intuitively, such "false match" errors will 
increase as a function of the number of feedforward connections converging onto each output cell, 
which is proportional to the number of (feature, location) pairs in each object. 

Assuming that each object contains K (feature, location) pairs, the pooling step involves connecting 
to K SDRs in the input layer. We assume that c active cells are connected for each of the SDR (𝑐 ≤
𝑤). In this section, we first compute how many input cells will be connected to an output cell, and 
then compute the probability that a random SDR will falsely activate an output cell (false match 
error). 

3.1 Number of feedforward connections 

In this section we calculate the expected number of feedforward connections. Given an input SDR 
that represents a (feature, location) pair, the probability that an input cell is active in this SDR, and is 
subsequently connected to an output cell is  

𝑝 =
𝑤
𝑁𝑀

c
𝑤 =

𝑐
𝑁𝑀 

 

The probability that an input cell is not selected as a connected cell in any of the K SDRs is 1 − 𝑝 N. 
Denote the set of input cells that is connected to an output cell that represents this object as 𝑈PQRR. The 
expected number of connected input cells is 
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|𝑈PQRR| = 𝐱𝒊

N

T,C

= [1 − (1 −
c
𝑁𝑀)

N]𝑁𝑀 

which grows sub-linearly as a function of K, and almost linear when K is small. That is, the number 
of connected cells is less than cK. The number of connected inputs per output cell, as a function of 
number of (feature, location) pairs per object is shown in Fig. 1. For example, typical cortical 
pyramidal neurons have hundreds of proximal synapses. If we assume each output cell receives <500 
inputs, each object should have less than 100 (feature, location) pairs. Each (feature, location) pair is 
represented by an input SDR that has 5 cells connected to the output cells (c=5, w=10). 

 

 

Figure 1. Number of connected inputs per output cell, as a function of (feature, location) pairs per 
object. Colored lines represent theoretical calculations. Black solid dots represent simulation result. 
In the simulation we created K random (feature, location) SDRs. An output cell connects to c active 
bits randomly for each SDR. The number of connections is plotted as a function of K. 

3.2  

3.3 False match error of a single output cell 

In this section we calculate the false match error of a single output cell. We assume that an output 
cell learns an object with K (feature, location) pairs. Consider a new (feature, location) pair that 
belongs to a different object, if the corresponding input SDR activates the same output cell, we call it 
a false match error. The chance of a single active bit in this new input SDR belongs to 𝑈PQRR is 

𝑝XYZP[+TZ =
|𝑈PQRR|
𝑁𝑀  

The total number of matching bits follows a binomial distribution, that is, given a random input SDR 
x, the chance of observing b bits matching is 
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𝑃(|𝐱 ∩ 𝑈PQRR| = 𝑏) =
𝑤
𝑏 𝑝+(1 − 𝑝)*>+ 

where 𝑝 = 𝑝XYZP[+TZ . 

 

The cumulative distribution function for binomial distribution is given as 

𝐹 𝑏; 	𝑤, 𝑝 =
𝑤
𝑏 𝑝+(1 − 𝑝)*>+

+

T,G

 

which is the probability of having less than b bits matching.  

The false matching error for one random input SDR, given a matching threshold θ is  

𝑃(|𝐱 ∩ 𝑈PQRR| > 𝜃) = 1 − 𝐹 𝜃; 	𝑤, 𝑝  

 

The false match error for a single random input SDR is shown in Fig. 2. The equations are verified 
by numerical simulations (not shown). The SDR false match error decreases with higher activation 
threshold (Fig. 2A), and increases with more connections (Fig. 2B). Intuitively, a random SDR is 
easier to activate an output neuron if there are more connections between the input and output layer 
and/or if the activation threshold for output cells is low.  
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Figure 2. SDR false match error as a function of (feature, location) pair number per object. A. Given 
fixed number of connections, error decreases with higher activation threshold. B. Given fixed 
activation threshold, error increases with more connections.  

 

Note that in practice it might be tolerable if a small fraction of the input SDRs evoke a different 
object. Because the sensorimotor algorithm will also integrate over time and across minicolumns, it is 
very unlikely for several consecutive SDRs to falsely evoke an unwanted object SDR if the 
individual SDR false match error is low. 

3.4 False match error of multiple output cells 

The false match error derived above is for a single output cell. Typically the output layer will have 
multiple cells active at any time. For simulations in the main text, we have 40 output cells active for 
each object. The activations of different output cells that represent the same object are correlated, due 
to shared feedforward connections, but not identical, due to sampling. If c is large, active output cells 
are connected to a similar set of input cells, which means if a random SDR falsely activate one output 
cell, it will also falsely activate most of the other output cells (Fig. 3, left). If there is substantial 
sampling for each input SDR (𝑐 ≪ 𝑤), there will be little overlap among the sets of input cells that 
are connected to each active output cell (Fig. 3, right). It is very unlikely for a random SDR to falsely 
activate many output cells simultaneously.  
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Figure 3.  L2 connections with large and small connections per input SDR.  

 

Consider a pair of output cells that represent the same object, the expected number of input cells that 
are connected to both output cells is  

𝑁abQcRYd = [1 − (1 −
c
𝑁𝑀

𝑐
𝑤)

N]𝑁𝑀 

The logic behind this equation is similar to that of |𝑈PQRR|. The chance that an input cell is active in 
one input SDR and is subsequently connected to the first output cell is c/NM. Given that it is 
connected to the first cell, the chance it is also connected to the second output cell is c/w. It is 
obvious that if c=w, 𝑁abQcRYd is the same as |𝑈PQRR|, which means the two output cells have identical 
feedforward connections. 

Given a random input SDR x, denote the overlap with the ith output cell as 

𝑜T(𝐱) = |𝐱 ∩ 𝑈PQRRT | 

where 𝑈PQRRT  is the set of input cells that are connected to the ith output cell.  

Assuming that the ith and the jth output cell represent the same object. Given a test SDR that has bi 
overlap with the ith output cell, we would like to compute the chance that it has bj overlap with the 
jth output cell. 

The total number of SDRs with bi overlap with the ith output cell is 

𝑛ZaZYR =
|𝑈PQRRT |
𝑏T

𝑁𝑀 − |𝑈PQRRT |
𝑤 − 𝑏T

 

Among this set of SDRs, the number of the SDRs that also has bj overlap with the jth output cell is   

𝑛efYRTgTQh =
𝑁abQcRYd

𝑙
𝑈PQRRT − 𝑁abQcRYd

𝑏T − 𝑙
|𝑈PQRR

j | − 𝑁abQcRYd
𝑏j − 𝑙

𝑁𝑀 − |𝑈PQRRT | − |𝑈PQRR
j | + 𝑁abQcRYd

𝑤 − (𝑏T + 𝑏j − 𝑙)
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This equation is a bit complicated, but the intuition is straightforward. We want to count the number 
of SDRs with bi overlap with the ith output cell and bj overlap with the jth output cell. A qualifying 
SDR could have l bits connected to both output cells (first term), 𝑏T − 𝑙 bits connected to the ith 
output cell (second term), 𝑏j − 𝑙 bits connected to the jth output cell (third term), and the rest of 𝑤 −
(𝑏T + 𝑏j − 𝑙) bits are not connected to neither output cells. 

 

Figure 4. Illustration of equation. Black text denotes the size of each compartment. The blue text 
denotes the number of active bits that lie within each compartment. 

The index l is the number of cells that are connected to both SDRs. The maximum possible number 
of such cells is 

𝑚𝑎𝑥𝐿 = min(𝑏T, 𝑏j) 

The minimum number of l is 

𝑚𝑖𝑛𝐿 = max	(max	(𝑏T − |𝑈PQRRT | + 𝑁abQcRYd, 0), 

																											max 𝑏j − 𝑈PQRR
j + 𝑁abQcRYd, 0 , 

												max	(𝑏T + 𝑏j − 𝑤, 0))) 

This is due to a set of non-negative constraints on 𝑏T − 𝑙, 𝑏j − 𝑙 and 𝑤 − (𝑏T + 𝑏j − 𝑙). 

 

Once we have 𝑛efYRTgTQh and 𝑛ZaZYR, the desired conditional probability is 

𝑃[𝑜j(𝐱) = 𝑏j|𝑜T(𝐱) = 𝑏T] =
𝑛efYRTgTQh
𝑛ZaZYR
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Figure 5 shows that this probability decrease quickly as the number of connections per SDR 
decreases for 𝑜T=5 and 𝑜j=5. With c=5, K=40, N=150, M=16 and w=10, the probability is as low as 
0.06. 

 

Figure 5. Given a SDR with 5 bits overlap with one output cell, the chance that SDR also has 5 bits 
overlap with a second output cell. The equations agree well with simulation. 

The joint probability distribution is 

𝑃[𝑜j(𝐱) = 𝑏j, 𝑜T(𝐱) = 𝑏T] = 𝑃[𝑜j(𝐱) = 𝑏j|𝑜T(𝐱) = 𝑏T]𝑃[𝑜T(𝐱) = 𝑏T] 

where 𝑃[𝑜T(𝐱) = 𝑏T] is derived in the previous section. 

Given a activation threshold θ, the chance that a random SDR falsely match two output cell is then 

𝑃gYRyQXYZP[
T,j = 𝑃[𝑜j(𝐱) = 𝑏j, 𝑜T(𝐱) = 𝑏T]

*

+z,-{C

*

+|,-{C

 

We	plot	 the	 chance	 of	 simultaneous	 false	match	 of	 two	output	 cells	 that	 represent	 the	 same	
object	 (green	 curve),	 together	 with	 the	 false	 match	 error	 of	 single	 output	 cell	 (blue),	 as	 a	
function	of	number	of	connections	per	input	SDR	(Fig.	6).	The	false	match	error	for	two	output	
cells	is	one	order	of	magnitude	smaller	than	that	of	a	single	output	cell	when	there	is	enough	
sampling	(small	c).	This	result	suggests	that	by	using	a	distributed	representation	in	the	output	
layer	 and	 a	 small	 number	 of	 connections	 per	 input	 SDR,	 the	 false	 match	 error	 can	 be	
significantly	reduced.		
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Figure 6. False match error for single output cell and pair of output cells, as a function of number of 
connections per input SDR. The activation threshold is set to 5.  

3.5 Storage of multiple objects 

So far we have discussed the error as a function of complexity of the object in terms of number of 
(feature, location) pairs per objects. In theory, the false error depends on the number of connections 
per output cell. Therefore, the network can also store a large number of simple objects. Storing a 
single large object with 100 (feature, location) pairs uses the same amount of feedforward 
connections as storing 10 simple objects, each with 10 (feature, location) pairs.  

In our capacity simulations, the output layer has a sparsity of 2%. It can thus store at least 50 large 
objects, each with 100 (feature, location) pairs with very small error rate. The same network can be 
used to store 500 small objects, each with 10 (feature, location) pairs.  

4 Simulation 

In this section we describe a simulation experiment. We created a set of objects with 100 (feature, 
location) pairs. The input layer has 150 minicolumns, 16 cells per minicolumn, and 10 active cells at 
any time. Among these 10 active cells, individual output cells randomly connect to c=5 input cells, 
and has an activation threshold of θ =4. There are 40 active output cells at any time. We repeated the 
experiment 10,000 times. On each trial, we computed the number of falsely activated output cells. 

With these parameters, individual output cells are connected to 452 input cells on average. The 
chance of having at least one output cell falsely activated is 0.203, which is quite high. However, it is 
very unlikely to have a large number of output cells falsely activated simultaneously. The chance of 
having at least L cells falsely activated decreased rapidly as a function of L (Fig. 7). The chance of 
simultaneously activating more than half of the output cells (20/40) is as low as 0.004. Therefore, we 
can still reliably recognize the objects by considering multiple output cells.  
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Figure 7. Left: Distribution of output cells that are falsely activated simultaneously. Right: The 
probability of simultaneously activating L output cells decreases rapidly as a function of L.  
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Improved Robustness to Noisy and Ambiguous Inputs with Feedback 

In this supplemental note we describe an example experiment that demonstrates the importance of the 
feedback signal when the inputs are noisy and ambiguous. In this experiment, we trained the network 
on 40 objects. Each object has 10 features and 10 locations. Each feature is randomly chosen from a 
small library of 10 unique features. The objects share the same set of 10 locations. Encoding of 
feature and location inputs are described in the Methods section of the main text.  

During inference, we provided ambiguous location inputs to the network. At each sensation, a union 
of three location SDRs was simultaneously presented to the network: the correct location SDR is 
accompanied by two other distracting locations that are randomly chosen from the 10 locations. We 
also added 30% noise to this union SDR by inactivating 30% of the active bits and simultaneously 
activate 30% of the inactive bits.  

We compared performance of the HTM sensorimotor network with or without feedback (Fig. 8). 
Without feedback, each active mini-column contains multiple (~2.5) active cells due to the 
ambiguous location input. When feedback is enabled, there are many fewer active cells in the input 
layer (Fig. 8A). This is because when multiple cells in a mini-column are predicted, cells with 
feedback input inhibit cells without feedback. At the same time, there are many fewer active cells in 
the output layer (Fig. 8B). The network recognized objects faster and achieved a much higher final 
recognition accuracy (Fig. 8C).  
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Figure 8 A. The number of active input cells vs. number of sensations. B. Number of active output 
cells vs. number of sensations. C. The recognition accuracy as a function of the number of 
sensations. The blue curves represent experiments when feedback is enabled, and the green curves 
are results when feedback is disabled. 

 

Ideal Observer and Multiple Column Networks 

We compared our multi-column sensorimotor network to an ideal observer model that also observes 
multiple features per sensation. In this experiment, we trained models on 100 objects. Each object 
consists of 10 sensory features chosen from a library of 5 to 30 possible features. Each feature is 
assigned a corresponding location on the object. Note that although each object consists of a unique 
set of features/locations, any given feature or feature/location is shared across several objects. 
Encoding of feature and location inputs, and the construction of the ideal observer model are 
described in the Methods section of the main text. 

The graph demonstrates that the behavior of our multi-column sensorimotor network is very close to 
the non-biological ideal observer model. The network’s behavior is slightly worse than ideal when 
objects are highly confused. (When the pool of unique features is 5, our 4 column network requires 
an average of 1.7 sensations vs 1.1 for the ideal observer.) 
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Figure 9 We plot the mean number of observations needed to unambiguously recognize an object 
with multi-column networks as the number of columns increases.  The required number of sensations 
rapidly decreases as the number of columns increases, eventually reaching one. The solid curves 
represent our sensorimotor model. The dashed curves represent the ideal observer model. 

 

 


